534. Molecular Polarisability. The Molar Kerr Constants of Certain Derivatives of Diphenyl.

By J. Y. H. Chau, (Mrs.) C. G. Le Fèvre, and R. J. W. Le Fèvre.

The molar Kerr constants of diphenyl and its 4-fluoro-, -chloro-, -bromo-, -iodo-, -nitro-, and 2:2'- and 3:3'-dinitro-derivatives are reported and discussed. They indicate a rough orthogonality of configuration for the last two molecules, and may be reconciled with flat configurations for the first six, among which conjugation is presumably causing a polarisability exaltation parallel to the $1: 1^{\prime}$-bond.

The measurements now recorded were started in the hope that they would assist decisions on the configurations adopted by diphenyl and certain of its derivatives when present as solutes at room temperatures.

The last thirty years' literature shows that configuration in this series is strongly affected by substitution. The diphenyl skeleton was originally expected by Le Fèvre and Turner ${ }^{1}$ to possess a tendency to planarity owing to conjugation, opposed by the volumes and electrical effects of substituents; the hydrocarbon itself is now known by X-ray analysis and electron diffraction to be planar ${ }^{2}$ in the crystal but non-planar ${ }^{3}$ in the vapour. Dipole moments ${ }^{4}$ in solution have indicated that $2: 2^{\prime}$-dinitrodiphenyls have their rings rotated out of the cis-position so that the angles between them range from 70° to 90° and that these (azimuthal) angles are exceeded in the corresponding $3: 3^{\prime}$ isomers. In gaseous 2:2'-dihalogeno-diphenyls ${ }^{5}$ the azimuthal angles are about 75°, as in crystalline ${ }^{6} 2: 2^{\prime}$-dichlorobenzidine (72°) and ${ }^{7} m$-tolidine dihydrochloride (71°); yet while 3:3'-dichlorobenzidine is ${ }^{3}$ non-planar (ca. 52°) as a gas, it is stated ${ }^{8}$ as a solid to have the chlorine atoms disposed trans in a model which is flat or nearly so. No information by the above methods appears to exist concerning the configurations of 4-monosubstituted diphenyls.

Present Measurements.-Standard techniques being used, ${ }^{\mathbf{9 , 1 0}}$ the dielectric constants, densities, electric double refractions, etc., have been observed for solutions of the solutes named in Tables 1 and 2. Symbols are defined in refs. 9 and 10.

The dipole moments of the five monosubstituted diphenyls in Table 2 have the slight novelty of being determined in carbon tetrachloride instead of benzene. ${ }^{4,11}$ The values are qualitatively consistent with past studies of relationships between polarisation and medium (cf. ref. 9, Chap. III).

Discussion.-It is of interest to compare experimental molar Kerr constants with those calculable from known bond or group polarisabilities. Data by Le Fèvre and Purnachandra Rao ${ }^{12}$ are relevant. For example, in computing ${ }_{m} K$ for $2: 2^{\prime}$ - or $3: 3^{\prime}$-dinitrodiphenyl, use can be made of the molecular semi-axes reported for nitrobenzene, ${ }^{12}$ viz., $b_{1}=1.617, b_{2}=1.200$, and $b_{3}=0.862 \times 10^{-23}$ c.c., where b_{1} lies collinear with $\mu_{\text {resultant }}$, b_{2} collinear with the $2: 6$ direction, and b_{3} perpendicular to the molecular plane.
${ }^{1}$ Le Fèvre and Turner, Chem. and Ind., 1926, 45, 831.
${ }^{2}$ Dhar, Proc. Nat. Inst. Sci. India, 1949, 15, 11.
${ }^{3}$ Bastiansen, Acta Chem. Scand., 1949, 3, 408.
${ }^{4}$ Le Fèvre and Le Fèvre, $J ., 1936,1130$; Le Fèvre and Vine, J., 1938, 967; Weissberger, Sängewald, and Hampson, Trans. Faraday Soc., 1934, 30, 884; Littlejohn and Smith, J., 1953, 2456, 1954, 2552.
${ }^{5}$ Bastiensen, Acta Chem. Scand., 1950, 4, 926.
${ }^{6}$ Smare, Acta Cryst., 1948, 1, 150.
${ }^{7}$ Fowweather and Hargreaves, ibid., p. 81.
${ }^{8}$ Toussaint, ibid., p. 43.
9 Le Fèvre, " Dipole Moments," Methuen, London, 3rd Edn., 1953.
${ }^{10}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
${ }^{11}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Institute of Technology, 1948.

12 Le Fèvre and Purnachandra Rao, J., 1958, 1465.

Table 1. Dielectric polarisations, Kerr effects, etc., at 25°.
Diphenyl in carbon tetrachloride.*

4-Bromodiphenyl in carbon tetrachloride.*

$10_{5} w_{2}$	375	392	554	767	813	1058	1249	1598
ε_{12}	$2 \cdot 2380$	$2 \cdot 2385$	$2 \cdot 2433$	$2 \cdot 2500$	2.2514	$2 \cdot 2576$	$2 \cdot 2630$	$2 \cdot 2710$
d_{12}	1.5834	1.5832	1.5831	1.5826	1.5825	$1 \cdot 5820$	$1 \cdot 5815$	$1 \cdot 5807$
$10^{5} w_{2}$	308	324	365					
n_{12}	1.4583	1-4584	1.4585					
$10^{5} w_{2}$	54	156	402	445	569	614		
$10^{7} \Delta B$	0.008	0.027	0.073	0.080	$0 \cdot 107$	$0 \cdot 115$		

whence $\sum \Delta \varepsilon / \sum w_{2}=2.89_{1}, \sum \Delta d / \sum w_{2}=-0.249_{8}, \sum \Delta n / \sum w_{2}=0.270_{8}, \sum \Delta B / \sum w_{2}=18.3_{0}$.
4-Iododiphenyl in carbon tetrachloride.*

$10^{5} w_{2}$	46	49	86	88	102	104
ε_{12}.	$2 \cdot 2280$	$2 \cdot 2280$	$2 \cdot 2286$	$2 \cdot 2287$	$2 \cdot 2291$	$2 \cdot 2291$
d_{12}	1.5845	1.5845	1.5845	1.5844	1.5844	1.5844
n_{12}	1.4576	1.4576				1.4578
$10^{7} \Delta B$	0.010	0.011	$0 \cdot 020$	$0 \cdot 020$	0.021	0.021

whence $\Sigma \Delta \varepsilon / \sum w_{2}=2 \cdot 00, \Sigma \Delta d / \sum w_{2}=-0.063, \sum \Delta n / \Sigma w_{2}=0.301_{5}, \Sigma \Delta B / \Sigma w_{2}=21.7$.
4-Nitrodiphenyl in carbon tetrachloride.*

$10^{5} w_{2}$	$\cdots \cdots \cdots \cdots \cdots$	39	56	94	132	175	211
$10^{7} \Delta B$	$\cdots \cdots \cdots \cdots \cdots$	0.062	0.084	0.144	0.205	0.266	0.326
$10^{5} w_{2}$	$\cdots \cdots \cdots \cdots \cdots$	185	230	385			
n_{12}	$\cdots \cdots \cdots \cdots \cdots$	1.4579	1.4580	1.4586			

whence $\sum \Delta B / \sum w_{2}=153 \cdot 7, \sum \Delta n / \sum w_{2}=0.250_{0}$.
2:2'-Dinitrodiphenyl in benzene. \dagger

$\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$						
	-0.083	829 -0.158	1112	1297	${ }_{1301}$	
		$\begin{gathered} -0.158-0.205-0.252-0.255 \\ \text { whence } \sum \Delta B / \sum w_{2}=-19.22 . \end{gathered}$				
$10^{5} w_{2}$	3:3'-Dinitrodiphenyl in benzene. \dagger					
	171	172	174	212	214	268
ε_{12}	2.2856	2.2859	2.2859	2.2885	2.2889	2.2938
d_{12}	$0 \cdot 8744$	0.8744	$0 \cdot 8744$	0.8745	$0 \cdot 8746$	$0 \cdot 8748$
$10^{5} w_{2}$	249	268	373	398		
n_{12}	1-4978	1-4978	1-4979	1-4980		
$10^{5} w_{2}$	33	50	65	76	80	82
$10^{7} \Delta B$	-0.005	-0.009	-0.012	-0.014	-0.014	-0.015

* For $w_{2}=0, \varepsilon^{25}=2.2270, d_{4}^{25}=1.5845, n_{D}{ }^{25}=1.4575, B_{D^{25}}=0.070 \times 10^{-7}$.
\dagger For $w_{2}=0, \varepsilon^{25}=2.2725, d_{4}^{25}=0.8738, n_{D}{ }^{25}=1 \cdot 4976, B_{D^{25}}=0.410 \times 10^{-7}$. 4 s

Table 2. Calculation of results.

Solute		$\propto \varepsilon_{1}$	β	γ	δ	$\begin{gathered} \infty P_{2} \\ (\text { c.c. }) \end{gathered}$	$\begin{gathered} \mathbf{D} P \\ \text { (c.c.) } \end{gathered}$	μ (D)	$10^{-12}{ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$
Diphenyl		0.585	-0.504_{5}	$0 \cdot 169$	$33 \cdot 99$	$52 \cdot 0_{6}$	(52.1)	ca. 0	$40 \cdot 5$
4-Fluoro-		$2 \cdot 87{ }_{1}$	-0.420_{8}	$0 \cdot 126$	$187 \cdot 4$	97-2 ${ }_{0}$	$51 \cdot 8^{a}$	$1 \cdot 49$	242
4-Chloro- ,		$3 \cdot 27{ }_{0}$	-0.433_{1}	0.138	$302 \cdot 1$	114.8	$57 \cdot 0^{\text {a }}$	$1 \cdot 6$	426
4-Bromo- ,		$2 \cdot 89_{1}$	-0.157_{7}	0.186	$261 \cdot 4$	$120 \cdot 8$	$60 \cdot 0^{\text {a }}$	1.72	456
4-Iodo- ,		2.00	-0.063	$0 \cdot 207$	310	$112 \cdot 7$	$65 \cdot 6^{\text {a }}$	$1 \cdot 5$	671
4-Nitro-		$18.92{ }^{\text {b }}$	$-0.477{ }^{\text {b }}$	$0 \cdot 172$	2196	$453 \cdot 3$	$57.9{ }^{\text {a }}$	$4 \cdot 40$	3265
2: 2^{\prime}-Dinitro- ${ }^{\text {c }}$.		$12 \cdot 43$	$0.367_{0}{ }^{\text {d }}$	$0.057{ }^{\text {d }}$	$-46 \cdot 88$	$623 \cdot 6$	$63 \cdot 8^{\text {a }}$	$5 \cdot 23$	-962
3: 3'-Dinitro-	e	$7 \cdot 72_{9}$	0.406	0.057	$-43 \cdot 5_{6}$	$404 \cdot 4$	$63 \cdot 8^{\text {a }}$	$4 \cdot 0_{8}$	-861

${ }^{a}$ Calc. from ${ }_{\infty} P_{2}$ for diphenyl by use of the R_{G} group values listed by Vogel, $J_{\text {., }}$ 1948, 1833.
${ }^{b}$ From Chau and Le Fèvre, J., 1957, 2300. ${ }^{\text {c }}$ Determinations in benzene. ${ }^{d}$ From Le Fèvre and Vine, J., 1938, 967.

Accordingly, if for the $2: 2^{\prime}$ - or $3: 3^{\prime}$-dinitrodiphenyl we assume an azimuthal angle of χ^{0} (such that $\chi=0$ or 180° for the fully cis- or trans-arrangements of the $\mathrm{C}-\mathrm{NO}_{2}$ links), and write $b_{1}{ }^{\text {dndp }}$ (dndp $=$ dinitrodiphenyl) as the polarisability in the direction of action of $\mu_{\text {resultant }}$, i.e., along the bisector of the angle χ, and $b_{2}{ }^{\text {dndp }}$ as the polarisability parallel to the $4: 1: 1^{\prime}: 4^{\prime}$-line, we have, by transposing the values b_{1}, b_{2}, and b_{3} for nitrobenzene:

$$
\begin{aligned}
b_{1}{ }^{\mathrm{dndp}}= & 2\left[b_{1} \cos ^{2} 30+b_{2} \sin ^{2} 30-b^{\mathrm{CH}}\right] \cos ^{2} \chi / 2 \\
& +2\left(b_{3}-b^{\mathrm{CH}}\right) \sin ^{2} \chi / 2+b_{\mathrm{T}}^{\mathrm{CC}} \\
b_{2}^{\mathrm{dndp}}= & 2\left[b_{1} \cos ^{2} 60+b_{2} \sin ^{2} 60-b^{\mathrm{CH}}\right]+b_{\mathrm{L}}^{\mathrm{CO}} \\
b_{3}{ }^{\mathrm{dndp}}= & 2\left[b_{1} \cos ^{2} 30+b_{2} \sin ^{2} 30-b^{\mathrm{CH}}\right] \sin ^{2} \chi / 2 \\
& +2\left(b_{3}-b^{\mathrm{CH}}\right) \cos ^{2} \chi / 2+b_{\mathrm{T}}^{\mathrm{CC}}
\end{aligned}
$$

Using $10^{23} b^{\mathrm{CH}}=0.063_{5}, 10^{23} b_{\mathrm{L}}{ }^{\mathrm{CH}}=0.098_{6}$, and $10{ }^{23} b_{\mathrm{T}}{ }^{\mathrm{CC}}=0.027_{4}$ (i.e., taking the $\mathrm{C}-\mathrm{C}$ internuclear bond, in the absence of better knowledge of the effects of conjugation, as though it were single), we can compute the quantity ($\left.2 b_{1}-b_{2}-b_{3}\right)^{\text {dndp }}$, which enters the "dipole terms" of the dinitrodiphenyls, for various values of χ; it becomes algebraically negative when χ exceeds $c a .73^{\circ}$. Calculation also shows that for all these values of χ, θ_{1} lies between 3 and 4×10^{-35}.

If now from the information obtained experimentally and listed in Table 2 under $\infty\left({ }_{m} K_{2}\right)$ and μ, the term $\left(\theta_{1}+\theta_{2}\right)$ is deducted, and an allowance of 4×10^{-35} made for θ_{1}, then from $\theta_{2},\left(2 b_{1}-b_{2}-b_{3}\right)$ emerges for $2: 2^{\prime}$ - and $3: 3^{\prime}$-dinitrodiphenyl as -0.64×10^{-23} and -0.94×10^{-23} respectively. These figures when compared with our computed values for $\left(2 b_{1}-b_{2}-b_{3}\right)$ correspond to the following specific values for $\chi: 2: 2^{\prime}$-dinitrodiphenyl $92-93^{\circ}, 3: 3^{\prime}$-dinitrodiphenyl 101— 102°. Such results resemble those previously obtained ${ }^{4}$ from straightforward polarity considerations: the configurations are nearly orthogonal, with the azimuthal angle some 10° greater in the $3: 3^{\prime}$ - than in the $2: 2^{\prime}$-isomer. Further, they illustrate once more the practicability of the method whereby b_{1}, b_{2}, and b_{3} for a given structure can be predicted from link and group polarisabilities and used in the interpretation of experimental results.

Diphenyl and its 4-derivatives. By similar arguments the molar Kerr constants of diphenyl and its five para-derivatives can also be "synthesised" from available data (cf. ref. 12). For each of the six molecules the ${ }_{\infty}\left({ }_{m} K_{2}\right)$ expected for the flat configuration is greater than that for the orthogonal. Thus with diphenyl we expect:

		$10^{23} b_{1}$	$10^{2 s} b_{2}$	$10^{23} b_{3}$
Flat configuration $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	$2 \cdot 199$	$2 \cdot 127$	1.425	27.4
Orthogonal configuration $\ldots \ldots \ldots \ldots \ldots .$.	$2 \cdot 199$	1.776	1.776	8.9

The value observed $\left(40.5 \times 10^{-12}\right)$ is larger than either of these ${ }_{\mathrm{m}} K$'s. The remaining five compounds exhibit the same disagreement:

	Substituent:	4-F	4-Cl	$4-\mathrm{Br}$	4-I	$4-\mathrm{NO}_{2}$
$10^{12}{ }_{\text {m }} K_{\text {cale }}$		152	269	337	20	1869
$10^{12}{ }_{\infty}\left(\mathrm{m} K_{2}\right)_{\text {olss }}$		242	426	456	671	3265

(Only the calculated values for flat configurations are quoted, because those for $\chi=90^{\circ}$ are more distant still from those observed.) The ratios ${ }_{\mathrm{m}} K_{\text {calc. }} / \mathrm{m} K_{\text {obs. }}$ fall between 0.48 and 0.79 .

The sum of the predicted semi-axes for diphenyl is 5.751×10^{-23}, from which an electronic polarisation of $48 \cdot 4$ c.c. is calculable; the ${ }_{E} P$ reported by Le Fèvre and Narayana Rao ${ }^{13}$ is 49.5 c.c., giving $b_{1}+b_{2}+b_{3}=5.886 \times 10^{-23}$. Parallel calculations for the other five molecules indicate a general deficiency throughout of $c a .1$ c.c. in the electronic polarisations (taken as ${ }_{\mathrm{D}} P \times 0.95$). When however the semi-axes are proportionately increased, the ${ }_{m} K$'s computed for flat configurations are only brought slightly nearer the experimental values (e.g., multiplication of the $10^{23} b^{\prime}$'s for diphenyl by $5 \cdot 886 / 5 \cdot 751$ gives $2 \cdot 251,2 \cdot 177$, and $1 \cdot 458$, whence ${ }_{\mathrm{m}} K_{\text {calc. }}$ is 28.8×10^{-12}). The cause of the lowness of ${ }_{\mathrm{m}} K_{\text {calc. }}$ (or the highness of ${ }_{\mathrm{m}} K_{\text {expt. }}$) must lie elsewhere.

The situation is understandable if diphenyl and its 4 -derivatives have effectively flat configurations in solution. Spectroscopic evidence (occurrence of an intense absorption around $2500 \AA$ with diphenyls unhindered in the ortho-positions, or forced into planarity as in fluorene) supports this. ${ }^{14}$ Only in flat forms can ring-ring conjugation be strongly developed. Unpublished measurements (Bramley and Le Fèvre) on diarylpolyenes, together with data in refs. 10 and 12 , show that molecular polarisability is notably enhanced in directions along which conjugation takes place. In terms of the present diphenyls, therefore, all the a priori estimates of b_{1} are likely to be too small, and those of b_{2} and b_{3} too large; the greatest errors will probably (cf. ref. 12) be with the b_{1} 's. Suppose, for the hydrocarbon, $10{ }^{23} b_{1}=2 \cdot 4,10^{23} b_{2}=2 \cdot 1,10^{23} b_{3}=1 \cdot 4$, the total would be 5.9×10^{-23} (which is correct), and the expected ${ }_{\mathrm{m}} K$ would be $39-40 \times 10^{-12}$, in agreement with measurement. (With the same semi-axes an orthogonal configuration would give ${ }_{\mathrm{m}} K$ ca. 21×10^{-12}.) Like " adjustments" in the cases of the 4 -derivatives produce similar results.

Attempts (by Purnachandra Rao) to test these remarks by determinations of depolarisation factors for the light scattered by carbon tetrachloride solutions of the 4 -halogenoand -nitro-diphenyls, and thus to ascertain b_{1}, b_{2}, and b_{3} separately, have been defeated by fluorescence, which induced an excessively large apparent Δ (cf. refs. 10 and 12). Until a range of strong monochromatic light sources are available the subject cannot usefully be carried further. Evidently polarisability in the diphenyl series can be treated additively only when conjugation is absent, i.e., when the species are non-planar.

University of Sydney, Australia.
[Received, December 29th, 1958.]
${ }^{13}$ Le Fèvre and Narayana Rao, Austral. J. Chem., 1955, 8, 39.
14 Beaven, Hall, Lesslie, and Turner, J., 1952, 854; idem and Bird, J., 1954, 131 ; Everitt, Hall, and Turner, $J ., 1956,2286$; Beaven and Hall, J., 1956, 4637; Brawde and Forbes, J., 1955, 3776.

